Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro.
نویسندگان
چکیده
Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium (Na(P)) current in mouse neocortical slices is associated with cellular bursting and our data suggest that these cells are capable of driving networks into a bursting state. This conclusion is supported by the following observations. 1) Both low concentrations of tetrodotoxin (TTX) and riluzole reduce and eventually stop network bursting while they simultaneously abolish intrinsic bursting properties and sensitivity levels to electrical stimulation in individual intrinsically bursting cells. 2) The sensitivity levels of regular spiking neurons are not significantly affected by riluzole or TTX at the termination of network bursting. 3) Propagation of cellular bursting in a neuronal network depended on excitatory connectivity and disappeared on bath application of CNQX (20 microM) + CPP (10 microM). 4) Voltage-clamp measurements show that riluzole (20 microM) and very low concentrations of TTX (50 nM) attenuate Na(P) currents in the neural membrane within a 1-min interval after bath application of the drug. 5) Recordings of synaptic activity demonstrate that riluzole at this concentration does not affect synaptic properties. 6) Simulations with a neocortical network model including different types of pyramidal cells, inhibitory interneurons, neurons with and without Na(P) currents, and recurrent excitation confirm the essence of our experimental observations that Na(P) conductance can be a critical factor sustaining slow population bursting.
منابع مشابه
Bursting Activity in Neocortical Networks
Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium current (Na P) in mouse neocortical slices is associated with cellular bursting, and our data suggests that t...
متن کاملEndogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies.
The pre-Bötzinger complex is a small region in the mammalian brainstem involved in generation of the respiratory rhythm. As shown in vitro, this region, under certain conditions, can generate endogenous rhythmic bursting activity. Our investigation focused on the conditions that may induce this bursting behaviour. A computational model of a population of pacemaker neurons in the pre-Bötzinger c...
متن کاملThe persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm.
Rhythm generation in neuronal networks relies on synaptic interactions and pacemaker properties. Little is known about the contribution of the latter mechanisms to the integrated network activity underlying locomotion in mammals. We tested the hypothesis that the persistent sodium current (I(NaP)) is critical in generating locomotion in neonatal rodents using both slice and isolated spinal cord...
متن کاملBursting in inhibitory interneuronal networks: A role for gap-junctional coupling.
Much work now emphasizes the concept that interneuronal networks play critical roles in generating synchronized, oscillatory behavior. Experimental work has shown that functional inhibitory networks alone can produce synchronized activity, and theoretical work has demonstrated how synchrony could occur in mutually inhibitory networks. Even though gap junctions are known to exist between interne...
متن کاملFast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels.
Fast rhythmic bursting (or "chattering") is a firing pattern exhibited by selected neocortical neurons in cats in vivo and in slices of adult ferret and cat brain. Fast rhythmic bursting (FRB) has been recorded in certain superficial and deep principal neurons and in aspiny presumed local circuit neurons; it can be evoked by depolarizing currents or by sensory stimulation and has been proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2006